Back

ⓘ යුක්ලිඩියානු දෛශිකය




යුක්ලිඩියානු දෛශිකය
                                     

ⓘ යුක්ලිඩියානු දෛශිකය

දෛශිකයක් යනු විශාලත්වයක් හා දිශාවක් සහිත ‍ජ්‍යාමිතික වස්තුවකි. දෛශිකයක් සෑම විටම දක්වනු ලබන්නේ Parallelogram law A නම් ලක්ෂයකින් ආරම්භ වී B නම් ලක්ෂයකින් අවසාවන රේඛා ඛණ්ඩයක් ලෙසටය.

විශාලත්වය රේඛා ඛණ්ඩයේ දිග මගින්ද, එහි දිශාව A ට සාපේක්ෂව B හි විස්ථාපනය මඟින්ද නිරූපණය වේ.

තාත්වික සංඛ්‍යා සඳහා වන බොහෝ වීජීය කර්මකයන් දෛශික සඳහා සමීප අනුකූලතාවයක් දක්වයි. එකතු කිරීම, අඩු කිරීම, සංඛ්‍යාවක් සමඟ ගුණ කිරීම සහ දිශාව ප්‍රතිවිරුද්ධ වූ විට අනෙක් පසෙට හැරීමද සිදුවේ. මෙම කර්මකයන් සුපුරුදු වීජීය නියමයන් වන සංඝඨන න්‍යාය විසස්තර න්‍යාය හා න්‍යාදේශ න්‍යායටද අනුකූලතාව දක්වයි. එකම ආරම්භක ලක්ෂයක් ඇති දෛශික දෙකක එකතුව ජ්‍යාමිතික ක්‍රමයක් වන සමාන්තරාඝ්‍ර නියමයේ Parallelogram law යන සංඛ්‍යාවක් මඟින් ගුණ කිරීම, මේ සම්බන්ධව පොදුවේ ව්‍යාපාරකරණ අදීශ, දෛශිකයක විශාලත්වය වෙනස්වීමට අවශ්‍ය ප්‍රමාණය හෙවත් එහි දිශාව නොවෙනස්ව ඇදීම හෝ හැකිලීම දක්වයි. -1 මඟින් ගුණ කලවිට දෛශිකයේ විශාලත්වය වෙනස් නොවී දිශාව ප්‍රතිවිරුද්ධ වේ. කාටීසියානු කණ්ඩාංක දෛශික හා ඒවා මත කර්මකයන් සමස්ථයක් ලෙස විස්තර කර දක්වයි. දෛශිකයක් එහි සංගුණක මඟින් ත්‍රිත්ව තාත්වික සංඛ්‍යාවක් බවට පත්වේ.

දෛශිකයක් සමඟ අදිශයක් එකතු කිරීමේදී ‍හා ගුණ කිරීමේදී එහි සංගුණකයෙන් සංගුණකයකට එය සිදු කිරීම කළ යුතුය. දෛශික භෞතික විද්‍ය‍ාවේ වැදගත් කාර්යභාරයක් ඉටු කරයි. ‍චලනය වන වස්තුවක ප්‍රවේගය හා ත්වරණය හා වස්තුවක් මත බලය ක්‍රියාකරන ආකාරය දෛශික මඟින් විස්තර කල හැකිය. බොහෝ භෞතික රාශීන් දෛශික ආකාරයට සැළකිල්ලට ගත හැකිය. කෙසේවෙතත් එක් දෙයක් සිහියේ තබාගත යුතුය. එනම් භෞතීය දෛශිකයක සංගුණක රඳාපවතින්නේ එය විස්තර කිරීමට භාජනය කරන ඛණ්ඩාංක පද්ධතිය මත බවයි.

                                     

1. නිරූපණය

සාමාන්‍යයෙන් දෛශිකයක් දක්වනු ලබන්නේ" a” තද පැහැ සිම්පල් ඉංග්‍රීසි අකුරුවලිනි. වෙනත් සම්මුතිවලදී විශේෂයෙන් අත්අකුරින් ලියන විට, a → {\displaystyle {\vec {a}}} හෝ a, ලෙස දක්වයි. විකල්ප ලෙස සමහරුන් සංකේත අකුර ටිල්ඩ් ~ එකක් හෙවත් යටින් රැළිති රේඛාවක් භාවිතා කරයි.එය සිම්පල් ඉංග්‍රීසි අකුරුවලින් දැක්වීම වෙනුවට යොදන සම්මුතියකි.

පහත දක්වා ඇති පරිදි, සාමාන්‍යයෙන් දෛශිකයක් ප්‍රස්ථාරයක හෝ වෙනත් සටහනක ඊ තලයක් මගින් දක්වනු ලැබේ.

මෙහි A ලක්ෂය ආරම්භක ලක්ෂ්‍යය කෙළවර හෝ පාදය ලෙසද: B ලක්ෂය හිස, අග හෝ අන්ත ලක්ෂය ලෙසද හැඳින්වේ. ඊතලයේ දිග මගින් දෛශිකයේ විශාලත්වය නිරූපණය කරන අතර ඊ හිසෙහි දිශාව මගින් දෛශිකයේ දිශාව නිරූපණය කරයි.

ඉහත සටහනේ ඊතලය A B → {\displaystyle {\overrightarrow {AB}}} හෝ AB ලෙසද ලිවිය හැක.

ද්විමාන සටහනක තලයට අභිලම්භ දෛශිකය පැවතිය හැකි අතර සාමාන්‍යයෙන් එම දෛශිකය කුඩා වෘත්තයකින් මගින් නිරූපණය කරයි. එහිදි සටහනේ මුහුණතින් ඉදිරියට යොමුවන දෛශික, කේන්ද්‍රයේ කුඩා තිතක් සහිත කුඩා වෘතයක් {\displaystyle \mathbf {a} ={\begin{bmatrix}a\\b\\c\\\end{bmatrix}}} a = a b c {\displaystyle \mathbf {a} ={\begin{pmatrix}a&b&c\\\end{pmatrix}}}

ත්‍රිමාන දෛශිකයක් ප්‍රකාශ කිරීමේ තවත් ක්‍රමයක් වන්නේ මූලික ඛණ්ඩාංක දෛශික තුනක් හඳුන්වා දීමයි. සමහර විට මේවා ඒකක දෛශික ලෙසද හඳුන්වයි.

e 1 = 1, 0, 0, e 2 = 0, 1, 0, e 3 = 0, 0, 1. {\displaystyle {\mathbf {e} }_{1}=1.0.0,{\mathbf {e} }_{2}=0.1.0,{\mathbf {e} }_{3}=0.0.1.}

මේවාට පිළිවෙළින් x,y හා z අක්ෂ ඔස්සේ දිශානුගතව ඇති ඒකක දිගකින් යුත් දෛශික ලෙස සිතිය හැක. මේ ආකාරයට R3 හි ඇති දෛශිකයක් ප්‍රකාශ කළ හැකි ආකාරය නම්;

a, b, c = a 1, 0, 0 + b 0, 1, 0 + c 0, 0, 1 = a e 1 + b e 2 + c e 3. {\displaystyle a,b,c=a1.0.0+b0.1.0+c0.0.1=a{\mathbf {e} }_{1}+b{\mathbf {e} }_{2}+c{\mathbf {e} }_{3}.}

සටහන: භෞතික විද්‍යාපන්තිවලදී මෙම විශේෂ දෛශික තුන i, j, k ලෙස දක්වනු ලබයි. හෝ කටිසියානු ඛණ්ඩාංකවලදී තලයේ x ^, y ^, z ^ {\displaystyle {\boldsymbol {\hat {x}}},{\boldsymbol {\hat {y}}},{\boldsymbol {\hat {z}}}} ලෙස නමුත් එය උසස් ගණිතයේ දී, උසස් භෞතික විද්‍යාවේදී හා ඉංජිනේරු විද්‍යාවේදී පොදුවේ භාවිතා කරන ‘දර්ශක අංකනය’ හා ‘සමාකලන සම්මුතිය’ සමග ගැටේ. මෙම ලිපිය e1, e2, e3 ලෙස භාවිතා කිරීම තෝරාගෙන ඇත.

දෛශිකයක් නිරූපණය කිරීමේ පදනම ලෙස x ^, y ^, z ^ {\displaystyle {\boldsymbol {\hat {x}}},{\boldsymbol {\hat {y}}},{\boldsymbol {\hat {z}}}} යන කාටිසීය ඒකක දෛශික පමණක්ම භාවිතා කිරීම අනිවාර්ය නොවේ. r ^, θ ^, z ^ {\displaystyle {\boldsymbol {\hat {r}}},{\boldsymbol {\hat {\theta }}},{\boldsymbol {\hat {z}}}} යන සිලිණ්ඩරාකාර ඒකක දෛශික මගින් හෝ යන r ^, θ ^, ϕ ^ {\displaystyle {\boldsymbol {\hat {r}}},{\boldsymbol {\hat {\theta }}},{\boldsymbol {\hat {\phi }}}} ගෝලීය ඒකක දෛශික මගින් හෝ දෛශික නිරූපණය කළ හැක. පසුව කියූ ආකාර දෙක වෙන වෙනම සිලිණ්ඩරාකාර හෝ ගෝලීය සමමිතියන් සහිත ගැටළු විසඳීම සඳහා යොදා ගැනීමට වඩාත් සුදුසු වේ.